2017/10/27 17:51:45

Нейросети (нейронные сети)

Нейросети – одно из направлений искусственного интеллекта, цель которого – смоделировать аналитические механизмы, осуществляемые человеческим мозгом. Задачи, которые решает типичная нейросеть – классификация, предсказание и распознавание.

Содержание

Нейросети способны самостоятельно обучаться и развиваться, строя свой опыт на совершенных ошибках. Анализируя и обрабатывая информацию из какого-то конкретного источника, либо из сети Интернет в целом, самоорганизующаяся система способна создавать новые продукты, не только воспроизводя и структурируя вводные данные, но и формируя качественно иной результат, ранее недоступный искусственному интеллекту.

Нейронет (NeuroNet) – один из предполагаемых и наиболее вероятных этапов развития Интернета. На новом этапе развития всемирной паутины взаимодействие участников будет осуществляться на принципах нейрокоммуникаций, т.е. на основе передачи информации об активности головного мозга. Ученые прогнозируют формирование рынка Нейронета к 2030-2040 г. Причем, ожидается, что в это время на рынке уже будут функционировать не менее 10 российских компаний с общей капитализацией около 700 млрд рублей.

Как использовать нейросети

В мире созданы нейронные сети, способные рисовать картины в любом существующем художественном стиле, уверенно обыгрывать чемпиона мира в самую сложную логическую игру на планете, записывать музыкальные альбомы и подражать поведению человека в электронной переписке. Всё перечисленное – пока лишь демонстрация части возможностей технологии, реальное применение которой как в бизнесе, так и в быту, мы увидим в ближайшем будущем.

Другими словами, нейронные сети позволят не только и не столько заменить человеческий труд в более сложных трудовых активностях, сколько стать полезным инструментом для специалистов и управленцев множества областей.

Влад Шершульский, Директор по перспективным технологиям, Microsoft Rus комментирует: «Эта область окончательно стала в 2016 году «горячей»: примерно с 2009 года наблюдается быстрый прогресс в создании все более сложных, и при этом все более эффективных, глубоких нейронных сетей, а в самое последнее время мы увидели впечатляю щие приложения и стали свидетелями создания целого ряда успешных стартапов. Порог входа на рынок нейросетевых сервисов существенно снизился, а проекты, построенные вокруг идеи одного интересного приложения, реализуются за считаные месяцы. Все это породило бум нейросетевых стартапов, вызвало интерес крупных корпораций и способствовало росту спроса на специалистов в этой области, в том числе и в России. Приятно отметить, что важнейший вклад в создание нового поколения технологий работы с естественными языками внесли специалисты компании Microsoft. В известном телевизионном сериале «Звездный путь» создание онлайнового перевод чика устной речи прогнозировали в XXII веке, а он у нас уже есть сегодня. Конечно, другие применения – от прогнозирования поломок автомобилей и банкротства контрагентов до новых средств кибербезопасности – тоже развиваются весьма успешно».

Нейросети в России

В России разработками в области нейросетевого программирования занимаются крупнейшие интернет-холдинги, в частности, Mail.ru Group и Яндекс, используя нейросети для анализа изображений и обработки текстов в поисковике. Самыми знаменитыми примерами стали технологии компаний Microsoft, Google, IBM и Facebook, а также стартапы MSQRD, Prisma[1].

2017

В Москве создадут нейросеть для распознавания показаний счетчиков воды по фото

Департамент информационных технологий (ДИТ) Москвы приступил к созданию системы на базе нейросети, предназначенной для считывания показаний счетчиков воды непосредственно с их фотографий. Научить нейронную сеть распознавать показания счетчиков на фото планируется к концу 2017 года. В целях обучения ей предстоит обработать порядка 10 тыс. таких изображений.[2]

Создаваемая в Москве нейросеть сможет считывать показания расхода воды по фотографиям счетчиков. Фото: VistaNews.ru


Мэрия Москвы на своем сайте попросила помочь жителей города с обучением нейронной сети. Для этого им потребуется просто загрузить снимки на сайт, подтвердив затем корректность распознанных цифр. Москвичи смогут загружать неограниченное количество фото, однако должны будут следовать ряду правил при фотографировании показаний: камера должна находиться на расстоянии не более 15 см от счетчика; не менее половины снимка должно быть занято изображением счетчика; на одном фото не должно быть два счетчика и более; разрешается сделать несколько снимков одного счетчика с разных ракурсов.

Чтобы сообщить показания счетчика, жителям столицы пока приходится вводить данные вручную. Распознавание показаний по фото, как ожидается, будет занимать считанные секунды и, как результат, позволит сэкономить москвичам время.

После запуска в работу натренированной нейросети фотографии нужно будет загружать в приложения «ЖКХ Москвы», «Госуслуги Москвы» или в личный кабинет на сайте mos.ru. Предполагается, что сеть сможет распознавать цифры на фотографиях счетчиков независимо от освещения, угла съемки, возможностей камеры и качества снимков.

Создание противораковых лекарств Mail.Ru Group, Insilico Medicine и МФТИ

8 февраля 2017 года Mail.Ru Group, Insilico Medicine и МФТИ сообщили об использовании нейронной сети для создания новых лекарств. Предполагается, что эта технология поможет искать препараты в самых разных областях — от онкологии до сердечно-сосудистых заболеваний.

Российские ученые взяли за основу архитектуру состязательных автокодировщиков. Для обучения использовались молекулы с известными лечебными свойствами и эффективной концентрацией. Информацию о такой молекуле подавали на вход сети. Сеть настраивали так, чтобы на выходе получить точно такие же данные. Она была составлена из трёх структурных элементов — кодировщика, декодера и дискриминатора, — каждый из которых выполнял свою специфическую роль, «сотрудничая» с двумя другими.

Кодировщик совместно с декодером обучался сжимать и затем восстанавливать информацию об исходной молекуле, а дискриминатор помогал сделать сжатое представление более подходящим для последующего восстановления. После того как сеть обучалась на множестве известных молекул, кодировщик вместе с дискриминатором «выключались», и сеть, используя декодер, генерировала описание молекул уже сама.

Архитектура нейронной сети

По словам специалистов, эффективность обучения нейронных сетей зависит от числа входных данных и размера самой сети. В среднем хорошая нейронная сеть может обучаться за неделю. Однако поиск оптимального решения архитектуры сети может потребовать нескольких месяцев.

« Мы сделали нейронную сеть генеративного типа, то есть умеющую создавать схожие вещи, на которых она обучалась. Мы обучили модель сети, которая способна создавать новые фингерпринты с заданными свойствами, — рассказал один из авторов проекта аспирант МФТИ Андрей Казеннов. »

В эксперименте, проведенном Mail.Ru Group, Insilico Medicine и МФТИ, сначала сеть обучалась на множестве известных молекул, потом она генерировала описание молекул сама. Для проверки сети использовали базу патентов в области противораковых лекарств. Задачей было предсказание уже известных форм, но таких, которых не было в обучающей выборке. На большую часть предсказанных нейросетью веществ уже есть патенты.

Нейросети в мире

2017: Рекурсивной нейросети удалось взломать капчу

Ученые из американской компании Vicarious создали алгоритм, расшифровывающий капчу — самый распространенный способ отличить человека от робота. Такой алгоритм работает на основе компьютерного зрения и рекурсивной кортикальной нейросети и, по утверждению разработчиков, может расшифровать капчу на многих популярных интернет-платформах, включая PayPal и Yahoo. Работа опубликована в журнале Science.[3]

CAPTCHA

Капча (CAPTCHA, расшифровывается как Completely Automated Public Turing test to tell Computers and Humans Apart — полностью автоматизированный публичный тест Тьюринга, позволяющий отличить человека от робота) используется для того, чтобы выяснить, кто пытается воспользоваться каким-либо сервисом: человек или какая-нибудь программа для автоматизации действий в интернете. В основе капчи обычно лежит задание, например, различить «плавающие» буквы, выделить слово на фоне или отметить фотографии, которые содержат определенный объект. Для его решения человеку достаточно имеющихся у него знаний об окружающем мире и базовых навыков (например, чтения). Компьютеру, однако, для выполнения подобного теста требуется огромное количество данных. Он может распознать любые стандартные символы, но, например, «плывущие» буквы, которые встречаются ему впервые — с трудом. С другой стороны, для человека подобная задача не представляет большой проблемы; искусственный интеллект, соответственно, должен быть максимально развит (по сравнению с настоящим, человеческим интеллектом) для ее решения.

Рекурсивная нейросеть

Ученым из Vicarious удалось разработать нейросеть для расшифровки капчи, получившую название «рекурсивная кортикальная нейросеть» (англ. recursive cortical network, сокращенно RCN). Для ее создания использовались знания об обработке визуальной информации человеком, а именно — об эффективном разделении объекта и фона, даже в том случае, когда они имеют очень похожую структуру. Созданная нейросеть способна выделять на общем фоне контур объекта (например, буквы) даже в том случае, если часть объекта скрыта за другим.

Для обучение нейросети было задействовано всего около 26 тыс. изображений. Для сравнения, алгоритму распознавания капч на основе сверточной нейросети (англ. convolutional neural network, CNN) их требуется несколько миллионов.

Для проверки работы нейросети использовались данные из открытого генератора капч Google — reCAPTCHA, особенность которых, по словам разработчиков, состоит в их сравнительной легкости распознавания для людей и сложности для компьютеров. Кроме того, для проверки были использованы капчи Yahoo, PayPal и Botdetect.

Итоги тестирования нейросети

Капча считается решенной, если компьютеру удалось распознать ее в одном проценте случаев. Нейросеть, созданная Vicarious, смогла расшифровать примеры из reCAPTCHA с точностью до 66,6%. Для сравнения, человек может распознать те же самые комбинации с точностью 87%.

George et al. / Science 2017


Примеры использованных для тренировки капч и эффективность работы нейросети на уровне слов (третий столбец) и букв (четвертый столбец)

Алгоритм также показал лучшую (по сравнению с другими алгоритмами, работа которых основана на сверточных нейросетях) эффективность в распознавании отдельных символов: до 94,3%. Для сравнения, эффективность работы сверточной нейросети существенно падает с увеличением визуальных различий между обучающей и тренировочной выборками.

George et al. / Science 2017

Эффективность распознавания отдельных символов рекурсивной нейросетью, или RCN, и сверточной нейросетью, или CNN. По оси y — доля различия данных из обучающей и тренировочной выборок

В целом эффективная работа представленного алгоритма поднимает вопрос о необходимости улучшения существующих решений по кибербезопасности и разработки средств для защиты данных пользователей от искусственного интеллекта.

Как строение нейронных связей в мозге легло в основу алгоритмов нейронных сетей

Чтобы разобраться в деталях, что такое нейронная сеть, вместе с математиком Евгением Путиным вспомним, что такое нейроны и синапсы, и как работает их система в живых организмах. Узнаем, как строение нейронных связей в мозге легло в основу алгоритмов нейронных сетей, и какие технологические задачи нейронные сети позволяют нам решать. О плюсах и минусах работы с нейронными сетями; о том, как происходит их обучение, и на что сети будут способны в недалеком будущем.

Евгений Путин — аспирант кафедры «Компьютерные Технологии» университета ИТМО, исследует проблемы интеграции концепции выбора признаков в математический аппарат искусственных нейронных сетей.

Homo ex machina: переносим сознание в компьютер

Если говорить о том, насколько реализуема идея перенесения сознания человека в машину, то можно отметить, что технологии, которые в будущем могут лечь в основу решения этой задачи, развиваются уже сегодня. Саму же задачу можно разделить на две: создание машины, которая могла бы вместить человеческое сознание, и создание технологии, которая могла бы это сознание скопировать и в эту машину перенести. Какой должна быть машина для того, чтобы она была способна эмулировать человеческое сознание? Как работает мозг, и что может быть подтверждением того, что решение задачи переноса сознания возможно в принципе? Как работают механизмы передачи информации в мозг? Чего достигли ученые в этом направлении за последние десятилетия, и что мы сможем делать в этой области в недалеком будущем?

Сергей Марков — специалист по методам машинного обучения, основатель портала «XX2 ВЕК», автор одной из сильнейших российских шахматных программ[4].

Робототехника



Примечания

  1. Обзор тенденций в сфере информационных технологий в России, GlobalCareer, 2016
  2. В Москве пишут нейросеть для учета расхода воды по фото
  3. Новая нейросеть взломала капчу
  4. Set Up - Открытый научно-популярный лекторий