2019/05/30 17:42:28

Искусственный интеллект (рынок России)

Опрошенные TAdviser заказчики и поставщики ИТ в 2018 году прогнозируют интенсивное развитие решений на базе искусственного интеллекта (ИИ) и машинного обучения и включают их в число наиболее востребованных технологий в России.

Содержание

2019

Совещание по искусственному интеллекту у Путина. Главное

30 мая 2019 года Владимир Путин провёл совещание по вопросам развития технологий в области искусственного интеллекта (ИИ). Совещание состоялось в ходе посещения «Школы 21» – учреждённой Сбербанком образовательной организации по подготовке специалистов в области информационных технологий. Подробнее здесь.


Создание Технического комитета по стандартизации ИИ

21 мая 2019 года стало известно, что на базе Российской венчурной компании (РВК) начнет работу Технический комитет (ТК) по стандартизации искусственного интеллекта (ИИ). В сфере его ответственности будут вопросы, связанные с нормативно-техническим регулированием прикладного использования технологий ИИ. Подробнее здесь

Названы самые распространенные типы ИИ-решений в России

Исследование «Цифровая экономика от теории к практике: как российский бизнес использует ИИ» , проведенное РАЭК и НИУ ВШЭ при поддержке Microsoft показало, что наиболее часто используемым типом решений на базе ИИ в России являются виртуальные помощники: их применяют 38% руководителей и ведущих специалистов. На втором месте оказались прогнозный анализ (35%) и машинное обучение (35%), сообщили 25 апреля 2019 года TAdviser в корпорации Microsoft.

Технологии ИИ в российских компаниях, %

При этом 39% опрошенных отметили, что в пятилетней перспективе в их компаниях планируется внедрение прогнозного анализа, а 34% — анализа изображений. 33% респондентов планируют использовать виртуальных помощников и обработку запросов на естественном языке. Также ожидается, что в течение 5 лет применение ИИ покажет взрывной рост в двух областях: самоуправляемые механизмы, например, беспилотный транспорт (с 9% до 24%) и робототехника (с 8% до 17%).

Критерии для оценки эффективности внедрения

Основными критериями оценки внедрения ИИ респонденты назвали удовлетворенность клиентов/партнеров/инвесторов (34%), достижение ожидаемого возврата инвестиций, ROI (33%) и качество продуктов и услуг (27%).

Большинство респондентов отметили, что в их компаниях искусственный интеллект используется в области исследований и разработки (R&D) — 41%, а также в работе с клиентами (например, для персонализации) — 32% и обслуживании клиентов — 31%. Наименьшее количество специалистов использует искусственный интеллект в юридических процессах (5%), в ценообразовании и продвижении (6%), в финансах и бухгалтерии (6%).

Области использования ИИ в российских компаниях, %

Российские эксперты в качестве секторов-лидеров по внедрению и использованию ИИ называют маркетинг и рекламу, ритейл, банкинг, телекоммуникации и промышленный комплекс. В зависимости от индустрии различаются и способы применения ИИ. В промышленности это чаще всего рекомендательные системы для принятия технологических решений и повышения безопасности производства, в розничной торговле — это решение логистических задач, изучение поведения покупателей, а в банках ИИ используют для формирования индивидуальных предложений, повышения эффективности таргетингов.

В качестве основных преимуществ применения ИИ более половины (58%) опрошенных российских экспертов назвали оптимизацию бизнес-процессов, чуть меньше — 49% — выделили разработку новых продуктов и услуг, а 41% после внедрения ИИ ожидают увеличения производительности труда. На повышение качества продуктов и услуг в результате внедрения ИИ рассчитывают 33% опрошенных, а 32% — на улучшение взаимодействия с клиентами.

Ожидаемое влияние развития ИИ в течение 5 лет (2019-2024), %

Более 90% опрошенных экспертов считают, что в 2019-2024 годах ИИ повлияет на экономический рост, производительность труда и инновационное развитие. Также ожидается существенное влияние искусственного интеллекта на создание рабочих мест (а именно, появление новых профессий, изменение требований к профессиям и др.) — 69%. Основными индустриальными вызовами развития ИИ в России 50% экспертов называют управление данными (сбор, аналитика, интерпретация данных), также в их число входят наличие и квалификация специалистов — 37% и необходимость изменения существующих бизнес-моделей — 27%.

«
Аналитики РАЭК уже не первый год изучают, описывают и измеряют эффекты цифровизации и реализуют собственную масштабную программу по направлению "цифровая трансформация бизнеса, госуправления, социальной сферы". По итогам 2018 года наша экспертиза выявила устойчивый тренд: когда мы говорим о цифровой трансформации, то первой технологией, которая упоминается в этой связи, является искусственный интеллект. Одна из причин этого, состоит, вероятно, в широчайшем спектре применения данной технологии, ведь искусственный интеллект — это и виртуальные помощники, и аналитика на основе больших массивов данных, и распознавание лиц и голоса, и робототехника, и оптимизация бизнес-процессов, и новые рекламные технологии, и рекомендательные сервисы, и многое-многое другое. Можно смело утверждать, что искусственный интеллект лежит в основе большинства современных технологических решений, которые составляют базис для цифровой трансформации. И что тренд на усиление влияния ИИ на цифровую трансформацию (в том числе "традиционных", "олдскульных") направлений экономики, промышленности и госуправления — будет только усиливаться, — рассказал Сергей Плуготаренко, директор РАЭК.
»

«
Цифровизация общества во многом трансформирует и исследовательскую сферу, мы хорошо видим это по темам получаемых грантов и проводимых исследований — темы диджитализации, отдельных инструментов в виде big data или face recognition, все чаще появляются в социальной тематике, это тренд. Но не хватает фундаментального подхода для системного анализа. Представленное исследование благодаря многоступенчатой методологии позволило обобщить зарубежный и российский опыт использования искусственного интеллекта, проиллюстрировать это кейсами российских компаний благодаря экспертным интервью и подтвердить опросными данными представителей российских компаний, которые уже использует инструменты ИИ, — рассказала Ольга Логунова, доцент департамента социологии НИУ ВШЭ.
»

30% российских руководителей активно внедряют искусственный интеллект

5 марта 2019 года корпорация Microsoft сообщила о том, что российские руководители используют возможности искусственного интеллекта (ИИ) для бизнеса активнее, чем их иностранные коллеги. Согласно исследованию «Бизнес-лидеры в эпоху ИИ» (Business Leaders in the Age of AI) 30% российских руководителей активно внедряют искусственный интеллект: в среднем по миру этот показатель равен 22,3%, а к примеру, во Франции — только 10%.

В Microsoft различают несколько стадий использования технологии:

  • 0 — ожидание;
  • 1 — исследование;
  • 2 — эксперименты;
  • 3 — формализация;
  • 4 — интеграция.

Под активным внедрением исследователи подразумевают уже зрелую стадию использования технологии. К компаниям, которые активно занимаются внедрением ИИ, исследователи отнесли те организации, где технология уже стала официальной частью корпоративной стратегии, а также те, в которых ИИ – неотъемлемая часть структуры компании, технология уже встроена в процессы, продукты и услуги, принося ценность всему бизнесу – стадии 3 и 4 соответственно. Именно по этим зрелым стадиям Россия и лидирует.

Среди основных приоритетов использования ИИ были названы:

  • постановка правильных целей (32%),
  • разработка бизнес-идей (26%),
  • определение возможностей рынка (25%)
  • принятие решений (23%).

Российские руководители заняли второе место по уровню положительного отношения к ИИ: 73% директоров считают, что технология позитивно повлияет на их управленческую деятельность. Также они продемонстрировали значительно более высокую готовность к обучению и развитию навыков в области ИИ. 90% из них выразили желание получить поддержку профессионалов, чтобы лучше и эффективнее работать с этой технологией; в мире же этот показатель составляет 67,3%. При этом 30% из них готовы выделять время для адаптации к современным условиям работы. В мире эта цифра составляет всего 20,3%.

«
Мы видим, что интерес к решениям на базе искусственного интеллекта со стороны бизнеса в России за последний год значительно увеличился. Так, в 2018 году наши доходы от корпоративных проектов с применением интеллектуальных технологий выросли на 63%. Все больше руководителей банков, энергетических, нефтегазовых, телекоммуникационных компаний понимают, что ИИ необходим для успешного развития бизнеса. Без интеллектуальных технологий все сложнее оставаться конкурентоспособным в любой отрасли. Крупные компании доверяют искусственному интеллекту обработку огромных объемов данных, поиск информации, используют технологии для анализа документов, оценки рисков и принятия решений. Уверен, что в ближайшие несколько лет большинство успешных компаний в России будут использовать интеллектуальные решения в различных бизнес-процессах.
Дмитрий Шушкин, генеральный директор ABBYY Россия
»

Помимо этого, российских бизнес-лидеров отличает более ответственное отношение к внедрению технологии: 65% из них считают, что ответственность за этику применения ИИ лежит на руководителе компании. В мире такой точки зрения придерживаются 53,9% директоров.

Кроме того, в результате исследования удалось выявить связь между использованием искусственного интеллекта и темпами роста компании. 40,6% руководителей быстрорастущих компаний по всему миру активно внедряют ИИ, в то время как среди медленнорастущих компаний этот показатель оказался более чем в два раза меньше и составил всего 18,5%. Быстрорастущие компании также выразили готовность внедрять ИИ в самом обозримом будущем: 93,2% руководителей таких организаций намерены использовать ИИ при принятии решений в течение 1-3 лет, в медленнорастущих компаниях 64% руководителей сделают это только в течение 3-5 лет.

«
Одним из главных качеств руководителя становится способность меняться и адаптироваться к современным реалиям рынка. Искусственный интеллект как технология обладает колоссальным потенциалом для бизнеса, и тот, кто раньше других приступит к его осмысленному внедрению, безусловно получит конкурентное преимущество. В этой связи очень приятно отметить, что именно российские руководители, которые традиционно отличаются очень высоким уровнем технологической экспертизы, оказались первыми по активному внедрению ИИ в мире.
Дмитрий Халин, технический директор Microsoft в России
»

2018

Обзор TAdviser: Искусственный интеллект 2018

Основная статья: Обзор: Искусственный интеллект 2018

Как совершенствуется искусственный интеллект - главные тенденции и препятствия

Основная статья: Как совершенствуется искусственный интеллект - главные тенденции и препятствия

К 2021 году в России объем рынка ИИ в промышленности составит $380 млн

Объем рынка ИИ в промышленности в России в денежном выражении к 2021 году составит $380 млн. В России к 2019 году к промышленному интернету будет подключено 1,3 млн единиц оборудования в машиностроении и 0,6 млн единиц - в процессном производстве. К такому выводу пришли специалисты компании «Цифра» и рабочей группы по искусственному интеллекту подкомитета по цифровой экономике РСПП, которые в преддверии ПМЭФ 2018 провели исследование научных публикаций за последние 5 лет о проектах применения ИИ и промышленного интернета вещей по всему миру. По их данным, всего в мире на 2016 год к IIoT было подключено до 1,7 млрд единиц промышленного оборудования[1].

Согласно исследованию, наиболее часто методы машинного обучения применяются в дискретном производстве (машиностроение, авиастроение, приборостроение и т.п.) – 44%, в процессном производстве (металлургия, химия, нефтехимия, нефтепереработка и нефтедобыча) - 22%, в электроэнергетике – 11%. Оставшиеся 23% рассмотренных проектов находятся на ранней стадии разработки, как правило, это научные работы университетов, исследующих применение методов ИИ в новых сферах для промышленного сектора.

Для решения задач IIoT и промышленной аналитики применяются такие методы, как многослойный перцептрон ((D)MLP) – в 14% случаев, метод опорных векторов (SVM) – в 14% случаев, сверхточные нейронные сети (CNN) – в 11%.

Большинство применений методов машинного обучения относится к предиктивной аналитике (Predictive analytics) – 26%, и описательной аналитике (Descriptive analytics) – 23%. Также достаточно часто данные методы применяются в области управления роботами и робозрении – 14%.

Как показало исследование, в дискретном производстве методы ИИ используются в первую очередь для увеличения срока службы промышленного оборудования и повышения эффективности его технического обслуживания. «Предсказательная аналитика помогает промышленникам получить информацию об остаточном ресурсе промышленных активов, а предписывающая аналитика еще и дает рекомендации, что нужно сделать для предотвращения сбоев в работе и недопущения аварий», - рассказал управляющий директор компании «Цифра» Растопшин Павел.

Вторая область применения - это роботехника и робозрение, когда создаются системы или модели, которые способны обучить промышленных роботов эффективным действиям без участия человека.

«
«Первое направление в большей степени оптимизирует расходы на содержание промышленного фонда, а второе перспективно с точки зрения генерации прибыли. Если первый сценарий в России возможен при развитии систем мониторинга оборудования и промышленного интернета вещей, то второе направление пока не столь активно в связи с низкой роботизацией отечественного производства», - пояснил Растопшин.
»

По его словам, в процессном производстве используются те же сценарии с предиктивной аналитикой и предписывающей аналитикой для более эффективного использования оборудования, что и в дискретном производстве. Но более перспективными с точки зрения влияния на экономические показатели предприятия являются системы типа «цифровой советчик» для цифрового управления технологическими процессами. Большая часть изученных примеров связана с контролем качества продукции или его предсказанием. «При этом Россия может стать одним из лидеров по применению ИИ в процессном производстве (металлургия, нефтегаз, химия). Оно преобладает в структуре ВВП России и более технологически готово к внедрению инноваций за счет накопленного массива данных. В то же время большинство зарубежных работ рассматривает в первую очередь дискретное производство», - подчеркнул Растопшин.

Эксперты отметили, что самые передовые методы, такие как метод обучения с подкреплением (самообучающаяся система, где обучаемое получает «вознаграждение» за максимально эффективный алгоритм действий), в промышленности практически не используются в силу новизны и сложности, хотя и могут дать существенный эффект.

Искусственный интеллект - самая горячая тема российского ИТ-рынка

В Департаменте информационных технологий Москвы (ДИТ) предполагают, что в 2018 году произойдет взрывной рост платформ, систем и мобильных приложений на базе искусственного интеллекта и нейронных сетей. При этом, считают в ДИТ, новые решения с использованием ИИ следует ожидать не только в уже существующих областях его применения – в финансовой сфере, в здравоохранении, на транспорте, но и в принципиально новых.

«
Основной проблемой для разработчиков таких платформ при этом останется получение обучающей выборки достаточного объема и качества, а также возможные ошибки в ней, - заявили TAdviser в ДИТ.
»

Гендиректор «РТ-Информ» (входит в госкорпорацию «Ростех») Камиль Газизов также ожидает существенного скачка развития в сфере искусственного интеллекта. Сегодня на него делают ставку почти все технологические лидеры, уверен он. При этом одно из перспективных направлений - внедрение искусственного интеллекта в борьбе с киберугрозами. В 2018 году можно будет наблюдать возрастающую «гонку вооружений» между теми, кто защищает информацию и теми, кто взламывает системы.

«
Одной из самых актуальных ИТ-задач была и остается информационная безопасность корпорации. «РТ-Информ» намерен повышать качество средств и технологий защиты, в том числе с использованием Artificial intelligence, а также выработать унифицированный подход к их использованию на всех предприятиях, - отметил Камиль Газизов в разговоре с TAdviser.
»

Михаил Кононов, директор департамента развития программного обеспечения и архитектуры «Банка Хоум Кредит», полагает, что в 2018 году можно ожидать все большего участия моделей machine learning в операционных процессах компаний.

«
Мы активно строим платформу для онлайн аналитики с использованием ML (machine learning) и DL (deep learning) моделей, чтобы лучше и своевременно обеспечивать клиентские потребности, - рассказывает директор департамента развития программного обеспечения и архитектуры «Банка Хоум Кредит».
»

Ранее заместитель председателя правления «Банка Хоум Кредит» Сергей Щербаков в интервью TAdviser упоминал искусственный интеллект в числе технологических приоритетов банка. Технологии Artificial Intelligence неотделимы от Big Data, поскольку данные являются основой, на которой технологии искусственного интеллекта могут работать, отмечал он. И эти две технологии, по его словам, в «Банка Хоум Кредит» уже развиваются — как самостоятельно, так и во взаимодействии с финтех-компаниями. В частности, они применяются в процессе принятия кредитных решений.

Стоит отметить, что в финансовой отрасли интерес к технологиям искусственного интеллекта особенно высок - о спросе и развитии этих технологий в компании заявляли многие российские банки. В «Сбербанке» считают, что через 5 лет 80% всех решений будут приниматься с помощью искусственного интеллекта. В «Альфа-банке» прогнозируют, что отрасль активно будет переходить на безлюдные технологии, и через 3 года клиенты в 50% случаев будут общаться с ботами.

В октябре 2017 года Бинбанк заявлял о планах запустить технологию искусственного интеллекта в работе с просроченной задолженностью в розничном бизнесе[2]. Программа будет выявлять клиентов, которым необходимы напоминания и консультации, а также тех заемщиков, звонить которым в принципе бесполезно. Благодаря искусственному интеллекту Бинбанк рассчитывает сэкономить 1 млрд рублей в 2018 году. Технология в банке уже используется при коллекшене на ранних стадиях просроченной задолженности.

Спрос на технологии искусственного интеллекта, машинного обучения ранее озвучивали многие российские заказчики и в других отраслях, включая госсектор. Так, ФНС в 2017 году начала использовать искусственный интеллект в личном кабинете физических лиц и планирует развивать этот проект в 2018 году. Новая версия личного кабинета ФНС использует чат-бот, помогающий людям решать вопросы, связанные с налоговым администрированием. Его предстоит научить работать с базой данных, в которую входит около порядка 150 тыс. различных жизненных ситуаций[3].

Некоторые проекты ИИ и машинного обучения в российском бизнесе

Начальник управления ИТ Росимущества Александра Осипова на конференции TAdviser SummIT в ноябре 2017 года в числе планов ведомства по цифровизации упоминала применение элементов искусственного интеллекта при формировании прогнозов доходов федерального бюджета и плана приватизации и использование технологии блокчейна для организации взаимодействия с другими органами власти.

В конце 2017 года также Департамент проектной деятельности правительства России предложил премьер-министру Дмитрию Медведеву концепцию новой системы правоприменения, в которой будет использоваться искусственный интеллект. По задумке авторов инициативы, по типовым делам искусственный интеллект мог бы самостоятельно генерировать судебные решения и проверять решения на ошибки и коррупционную составляющую[4].

Технологии ИИ интересны и ритейлу. Так, решения с использованием «компьютерного зрения» для распознавания товаров и лиц покупателей, совмещенные с искусственным интеллектом, готова тиражировать розничная сеть «Дикси».

Дмитрий Лившиц, гендиректор «Диджитал Дизайн», полагает, что со стороны заказчиков в 2018 году будут востребованы применение технологий машинного обучения для автоматизации базовой производственной деятельности и автоматизация не конкретных бизнес-процессов, а задач на стыке принципиально разных предметных областей, дающих заказчику конкурентное преимущество, считает гендиректор «Диджитал Дизайн».

Гендиректор Abbyy Россия Дмитрий Шушкин предполагает, что в 2018 году компании станут еще больше полагаться на искусственный интеллект для поддержки принятия решений, повышения качества работы с клиентами и создания цифровых сервисов.

Аналитики PwC проводили опрос 2000 топ-менеджеров крупных компаний: уже сегодня в стратегических вопросах руководители в 41% случаев опираются на аналитические данные, полученные с помощью технологий машинного обучения. Эта тенденция усилится в 2018 году, уверен Шушкин.

Скорее всего, ИИ будет более активно использоваться в таких бизнес-процессах, как управление репутацией компании. Алгоритмы ИИ смогут помочь специалистам справляться с большим наплывом ложных сообщений: отслеживать такие новости и выявлять недостоверную информацию, поделился с TAdviser мнением гендиректор Abbyy Россия.

«
В 2017 году активно развивались персональные помощники: мы увидели рождение «Алисы» Яндекса, появился планировщик задач Yva, новые функции добавились в Amazon Echo и Alexa. Предполагаю, что в 2018 году спрос вырастет на ИИ для решения более масштабных задач: например, для обработки запросов в техническую и клиентскую поддержку компаний, для принятия решений о регистрации или открытии счетов клиентов, для оценки инвестиционных, технологических, управленческих или других рисков, - отмечает Дмитрий Шушкин.
»

2017

Исследование TAdviser: Объем рынка и прогноз

По результатам исследования «Актуальные тенденции рынка искусственного интеллекта и машинного обучения», проведенного аналитическим центром TAdviser и компанией «Инфосистемы Джет» (скачать полную версию отчета), объем рынка искусственного интеллекта (AI) и машинного обучения (ML) в России составит в 2017 г. около 700 млн руб. и вырастет до 28 млрд руб. к 2020 г. Драйверами этого рынка будут финансовый сектор, ритейл и промышленность.

«
Мы инициировали данное исследование, чтобы оценить реальное состояние отечественного рынка AI/ML: публичных данных по этому направлению все еще крайне мало – российские компании не спешат рассказывать о технологиях, дающих им конкурентное преимущество, – комментирует Владимир Молодых, руководитель дирекции по разработке и внедрению программного обеспечения компании "Инфосистемы Джет". – Полученные результаты позволили нам убедиться в правильности выбранного нами курса на развитие направления AI/ML. Бизнес сегодня проявляет повышенный интерес к подобным внедрениям, поскольку они позволяют заметно увеличивать прибыль на уже имеющихся ресурсах – и все это при небольшом (всего несколько месяцев) сроке окупаемости.
»

Такой вывод был сделан по итогам опроса представителей 100 компаний, работающих в России – ИТ-руководителей, руководителей департаментов цифровых сервисов/цифровой трансформации, влияющих на принятие решений в области ИТ. Для анализа мировой ситуации использовались данные различных аналитических агентств (IDC, Gartner, Markets and Markets и пр.), консалтинговых компаний и вендоров (PwC, Teradata, SAP и пр.).

В мире количество проектов в области AI и ML за 2015-2017 годы выросло в разы. Если в 2015 г. глобально анонсировались только 17 проектов, выполненных крупными компаниями, то за первую половину 2017 года – уже 74 проекта. Всего в 2015–2017 гг. было зафиксировано 162 таких проекта в 28 странах и 20 отраслях. В 85% случаев речь идет о реализованных проектах, в 15% – о планах или тестовых внедрениях по всем отраслям за исключением госструктур, где доля тестовых внедрений и анонсов оценивается в 60%. Основная доля заказчиков таких инициатив – крупный бизнес (85%).

США лидирует по количеству проектов AI/ML. Следом идет Великобритания, где эти решения часто используют в крупных инвестиционных банках, а также обслуживающая эту группу заказчиков Индия.

Отечественный сегмент искусственного интеллекта и машинного обучения пока находится на начальной стадии формирования и значительно уступает в объемах крупному AI-рынку США. Практическое применение технологий тормозит необходимость достаточно высоких инвестиций в проекты при сомнениях бизнеса в их целесообразности. До недавнего времени практически отсутствовала наглядная демонстрация связи технологий с существующими бизнес-процессами и возможностью их улучшения. В то же время эффективные внедрения часто остаются закрытыми, ведь компании-инноваторы видят в результатах таких проектов источники дополнительного конкурентного преимущества и не спешат ими делиться.

Кроме того, некоторые руководители российских компаний отмечают, что бизнес на сегодняшнем уровне автоматизации в среднем пока не готов к использованию таких инструментов. Существенный барьер для развития бизнес-ориентированного AI в России – вычислительные мощности. Для активизации проектов необходимо обеспечить соответствующее развитие высокопроизводительной инфраструктуры.

Тем не менее, к настоящему моменту в России уже есть примеры внедрения ML, которые доказывают эффективность применения этих технологий и пользу для бизнеса. Так, в ритейле был отмечен рост конверсии до 15% при использовании товарных рекомендаций на базе машинного обучения, при этом количество ручных операций может сократиться до 50 раз. В нескольких опрошенных банках из ТОП-5 считают, что через 5 лет около 80% всех решений будут приниматься с помощью искусственного интеллекта и прогнозируют, что отрасль начнет активно переходить на безлюдные технологии (через 3 года клиенты в 50% случаев будут общаться с ботами). Промышленный сектор замыкает тройку лидеров по внедрению AI, однако процент проникновения технологии в компании из этой отрасли пока на низком уровне.

Большинство опрошенных организаций, применяющих технологии ML, делают это в целях сокращения издержек (72%), а также для повышения качества своих продуктов или услуг (68%). Дополнительно рядом респондентов было отмечено, что инструментарий часто используется ими для решения вопросов, связанных с безопасностью. Более половины опрошенных считают, что AI может обеспечить бизнесу новые экономические выгоды.

Больше половины респондентов уверены, что их затраты на AI/ML в ближайшие 3–5 лет будут расти, причем примерно треть опрошенных называет цифру в 15–20% в год.

Что касается направлений использования AI и ML, то наиболее открыто компании говорят об использовании ботов или систем распознавания речи. При этом почти все респонденты подтверждают, что удовлетворены существующим качеством и функционалом решений с учетом стадии их развития. В силу недостаточного уровня развития технологий, а также невысокого уровня осведомленности о них большинство респондентов затрудняются указать, каких именно инструментов AI им сегодня не хватает, апеллируя преимущественно к более интеллектуальному поиску и интеллектуальному маркетингу. В первую очередь опрошенные компании заинтересованы в сборе актуальной статистики о результатах реализованных ранее внедрений. Она станет основой для принятия решений о новых проектах или инициативах в сфере AI.

2016

Давид Ян запускает разработку умного поисковика Findo

Основная статья: Findo.io - умная система поиска по документам, файлам, контактам, почтовым ящикам

В начале 2016 года Давид Ян, основатель компании Abbyy, объявил о запуске в США нового проекта – Findo. Findo является интеллектуальным помощником, которые предназначен для поиска информации в интернете, в облаке и локальных файлах. Уникальной способностью помощника является распознавание естественной речи (правда, пока только на английском языке).

Для поиска могут использоваться достаточно «сложные» запросы. Например, Findo способен работать с запросами, вида: «найди документы, которые я редактировал в прошлую среду», «покажи письмо, которое мне вчера прислали из Москвы» и т.д.

Яндекс: Поиск, "Дзен" и "Аудитории"

Компания "Яндекс" давно применяет технологии искусственного интеллекта в своих поисковых механизмах. В 2016 году работа ведется над созданием нейронной сети, способной вывести принцип работы поисковика на новый революционный уровень. Традиционный алгоритм поиска основан на сопоставлении содержания запроса с контентом анализируемых страниц. Безусловно, все это делается с некоторыми дополнениями и расширениями – запросы переформулируются, добавляются синонимы, переводятся на другой язык и т.д.

В новом подходе каждому запросу ставится в соответствие некое векторное число, наиболее точно отражающее его смысл. Далее поиск осуществляется по этому числу. При этом запрос и ответ могут не иметь ни одного общего слова. Все, что их будет объединять – это одинаковый смысл содержимого.

Стоит отметить, что в перспективе в векторное число смогут переводится изображения и видео, что, по словам представителей Яндекс, позволит значительно расширить границы «умного» поиска.

В 2016 году "Яндекс" выпустила обновленную версию своего браузера, в котором технологии искусственного интеллекта позволяют персонализировать поиск в соответствии с интересами пользователя. Новый сервис получил название "Дзен".

«Несмотря на многообразие информации в сети, найти для себя что-то по-настоящему интересное не так просто. Дзен решает эту задачу. Во многом он похож на поисковую систему. Только если поиск ищет что-то определенное, то Дзен отвечает на более широкий запрос: что интересно конкретному человеку. Мы уверены, что в будущем все браузеры будут идти по пути персонализации и помогать пользователям выбирать контент», - Виктор Ламбурт, руководитель сервиса Яндекс.Дзен.

Дзэн не только учитывает то, чем традиционно интересуются пользователи, но и анализирует их текущие предпочтения. Например, если человек заинтересуется анатомией, то материалов, связанных с этой темой, в его новостной ленте станет значительно больше. При этом, Дзен не ограничивается лишь любимыми сайтами и предпочтениями пользователя. Пользователю могут предлагаться материалы из совершенно незнакомых источников, если Дзен посчитает, что они могут его заинтересовать.

Достаточно интересным является применение технологий искусственного интеллекта в сервисе "Яндекс.Аудитории". Данный сервис позволяет компаниям найти в Интернете целевых клиентов с целью более эффективного таргетирования рекламных объявлений. Достаточно загрузить в сервис список клиентов с телефонами и/или e-mail адресами, и система, сканируя социальные сети с помощью искусственного интеллекта, находит этих людей в сети Интернет. Далее можно разбить клиентов по целевым группам и персонализировать для них через Яндекс.Директ рекламные объявления. Например, можно ненавязчиво предлагать целевой аудитории новый товар, или в конце концов склонить пользователей к покупке товара, которым они уже интересовались ранее.

2015: Abbyy представила технологию Compreno для корпоративного бизнеса

Основная статья: Abbyy Compreno

Одним из главных достижений российской Abbyy является система Compreno, позволяющая анализировать и понимать текст на естественном языке. Над созданием данной системы специалисты компании работали около 10 лет. Стоимость проекта составила более $80 млн.

1832: Семён Корсаков изобретает перфокарты и 5 "интеллектуальных машин"

Основная статья: Исследования в сфере искусственного интеллекта

Коллежский советник Семён Николаевич Корсаков (1787—1853) ставил задачу усиления возможностей разума посредством разработки научных методов и устройств, перекликающуюся с современной концепцией искусственного интеллекта, как усилителя естественного.

В 1832 году С. Н. Корсаков опубликовал описание пяти изобретённых им механических устройств, так называемых «интеллектуальных машин», для частичной механизации умственной деятельности в задачах поиска, сравнения и классификации. В конструкции своих машин Корсаков впервые в истории информатики применил перфорированные карты, игравшие у него своего рода роль баз знаний, а сами машины по существу являлись предтечами экспертных систем.

См. также

Робототехника



Примечания

  1. В основу методологии исследования лег анализ более 100 научных публикаций, содержащих информацию о применении технологии искусственного интеллекта и подробное описание применяемой технологии. В поле зрения экспертов попали проекты исследовательских и коммерческих организаций из 27 стран. Наибольший процент публикаций из США (32%), Китая (12%) и Германии (10%). Остальные страны, включая Россию, представлены точечными проектами.
  2. Искусственный интеллект принесет Бинбанку 1 млрд рублей в 2018 году
  3. ФНС начала использовать искусственный интеллект для работы с физлицами
  4. В правительстве предложили выносить судебные решения с помощью искусственного интеллекта