СПбПУ: Нейросеть для диагностики Covid-19

Продукт
Название базовой системы (платформы): Искусственный интеллект (ИИ, Artificial intelligence, AI)
Разработчики: Санкт-Петербургский Государственный Политехнический Университет (СПбПУ) Петра Великого
Дата премьеры системы: 2023/10/18
Отрасли: Фармацевтика, медицина, здравоохранение

2023: Представление нейросети для диагностики COVID-19

Ученые из СПбПУ создали нейросеть для диагностики COVID-19. Об этом университет сообщил 18 октября 2023 года.

Исследователи и медработники систематизировали большой спектр патологоанатомических данных, которые идентифицируют пневмонию COVID-19 на изображениях. Интерпретация результатов рентгенографии или КТ-снимка требует внимания высококвалифицированных специалистов. Исследователи создали нейросеть, выявляющую признаки ковид-ассоциированной пневмонии на основе изображений компьютерной томографии. Модель, основанная на сочетании ResNet, Convolutional Block Attention Module (CBAM), и новой сети AdjCNet, показала точность классификации 99,23%.

«
Наша модель позволяет быстро и точно определить наличие COVID-19 или других видов пневмонии на КТ-снимках легких. Это может помочь врачам быстрее и точнее ставить диагнозы, что позволит снизить нагрузку на медицинский персонал. От аналогов наша программа отличается, прежде всего, улучшенной точностью интерпретации, - отметил один из разработчиков нейросети, инженер Научно-технологического комплекса "Математическое моделирование и интеллектуальные системы управления" Научного центра мирового уровня "Передовые цифровые технологии" СПбПУ Диб Али.
»

При создании нейросети исследователи задействовали технологии глубокого обучения, включая ResNet (сеть с остаточными соединениями), модуль внимания CBAM и сеть AdjCNet, специализирующуюся на анализе оттенков серого в соседних областях изображения. Для обучения нейросети ученые воспользовались набором срезов компьютерной томографии COVID-19, полученных в разных странах. Он содержит более 7500 снимков легких, пораженных ассоциированной с коронавирусом пневмонией, более 2500 снимков легких с внебольничной пневмонией и почти 7000 снимков здоровых легких.

Результаты четырехкратной перекрестной проверки нейросети доказали ее точности и эффективность. По словам исследователь, модель имеет большой потенциал для точной и быстрой диагностики COVID-19 с использованием изображений компьютерной томографии.