Разработчики: | Московский физико-технический институт (МФТИ) |
Дата премьеры системы: | 2021/03/31 |
Технологии: | Процессоры |
Основные статьи:
2021: Создание квантовой интегральной схемы на основе пяти сверхпроводниковых кубитов
В лаборатории искусственных квантовых систем МФТИ создана квантовая интегральная схема на основе пяти сверхпроводниковых кубитов. Об этом МФТИ сообщил 31 марта 2021 года. Она является важным шагом на пути создания полномасштабных универсальных квантовых процессоров и симуляторов. Эту полностью управляемую многокубитую квантовую схему можно считать прототипом квантового процессора.
Устройство уже на март 2021 года может быть использовано в квантовом машинном обучении — области науки на пересечении квантовой физики и обработки данных. Квантовые системы могут ускорять вычисления и сокращать количество параметров в нейросети. Благодаря этому квантовые нейросети становятся более выразительными и позволяют описать задачу меньшим числом параметров. Система также поможет в исследовании подходов к созданию квантовых симуляторов, служащих для контролируемой имитации поведения естественных систем, не поддающихся классическим расчетам.
Над созданием универсального квантового компьютера, способного решать любую алгоритмизируемую задачу, работают ведущие мировые научные центры. Однако вероятнее, что именно квантовые симуляторы для машинного обучения позволят коммерциализировать технологию в самом скором времени и приблизят момент появления универсальных устройств.
Интегральная схема разработана в лаборатории искусственных квантовых систем МФТИ и изготовлена на технологической базе Центра коллективного пользования московского Физтеха. Первые измерения показали, что все элементы схемы работают с ожидаемыми параметрами. На март 2021 года МФТИ обладает особой возможностью самостоятельно разрабатывать, изготавливать и тестировать квантовые устройства.
После получения первого российского кубита в 2015 году в стенах нашей лаборатории мы многому научились. Все эти годы сотрудники ЦКП МФТИ и лаборатории трудились над улучшением технологии изготовления сверхпроводящих квантовых структур с различной архитектурой. В результате на март 2021 года мы имеем технологию, которая уже достаточно надежна для создания многокубитных вычислительных устройств.
Созданная нами интегральная квантовая схема, в отличие от ранее разработанных в России прототипов, позволяет полностью контролировать состояние всех пяти кубитов. Такие интегральные схемы и необходимы для создания универсального квантового компьютера на сверхпроводящих кубитах. Это большой технологический успех, прокомментировал один из разработчиков схемы — научный сотрудник лаборатории искусственных квантовых систем МФТИ Алексей Болгар.
|
Данное достижение стало возможным благодаря нескольким ключевым фактам. Во-первых, сотрудникам Центра коллективного пользования вуза и технологам лаборатории удалось существенно улучшить контроль геометрических и электрических параметров туннельных контактов. Эти контакты являются «сердцем» сверхпроводящих кубитов, от качества и воспроизводимости их изготовления зависит работоспособность всей квантовой схемы.
Во-вторых, была отлажена технология изготовления микроволновых резонаторов, добротность которых в однофотонном режиме составляет сотни тысяч. Такие высокодобротные резонаторы являются неотъемлемой частью квантовой интегральной схемы — они располагаются на чипе вблизи кубитов и служат для считывания их квантового состояния.
Третьей важной вехой в становлении технологии явилась отладка процесса изготовления навесных мостиков — так называемых эйр-бриджей, которые позволяют подавить паразитные резонансные моды и тем самым повысить добротность структур.
Наконец, четвертая и, пожалуй, самая важная составляющая успеха — это опыт, накопленный сотрудниками технологического центра МФТИ и лаборатории искусственных квантовых систем за последние годы. Здесь сформировалась слаженная команда талантливых и увлеченных исследователей. И она, кстати, продолжает пополняться, ведь система подготовки студентов в МФТИ позволяет талантливым людям выполнять НИР непосредственно в научных лабораториях.
Наши текущие результаты говорят о том, что технологические и измерительные возможности ЦКП и нашей лаборатории позволяют отработать и выполнить все этапы, необходимые для создания элементов квантовых процессоров, от технологических чертежей до интегральной квантовой схемы на чипе и ее измерений. Однако дальнейшее развитие работ по созданию управляемых элементов квантового компьютера и самого компьютера потребует модернизации `чистой зоны` ЦКП и дополнительного оснащения лаборатории современным исследовательским оборудованием, добавляет Алексей Болгар.
|
Название решения | Разработчик | Количество проектов | Технологии |
---|---|---|---|
МФТИ и НИТУ МИСиС: Четырехкубитный квантовый процессор | Московский физико-технический институт (МФТИ), НИТУ МИСиС (Национальный исследовательский технологический университет) | 0 | Процессоры |
Подрядчики-лидеры по количеству проектов
Т1 Интеграция (ранее Техносерв) (4)
МЦСТ (4)
Микрон (Mikron) (4)
Lenovo (4)
ИНЭУМ им. И.С. Брука (3)
Другие (48)
Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров
МЦСТ (8, 22)
Микрон (Mikron) (2, 9)
Oracle (1, 7)
Nvidia (Нвидиа) (18, 6)
Intel (36, 5)
Другие (194, 15)
Байкал Электроникс (Baikal Electronics) (1, 2)
Intel (1, 1)
Huawei (1, 1)
Nvidia (Нвидиа) (1, 1)
Микрон (Mikron) (1, 1)
Другие (0, 0)
Распределение базовых систем по количеству проектов, включая партнерские решения (проекты, партнерские проекты)
Эльбрус - 15 (8, 7)
Микрон Интегральные микросхемы MIK - 9 (9, 0)
Oracle SPARC - 7 (7, 0)
Intel Xeon Scalable - 5 (5, 0)
Nvidia Volta - 3 (0, 3)
Другие 7
Baikal-M - 2 (2, 0)
Nvidia Volta - 1 (0, 1)
Huawei Kunpeng (процессоры) - 1 (1, 0)
Микрон Интегральные микросхемы MIK - 1 (1, 0)
Другие -1